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Roadmap to classification

A,B “well-behaved” C∗-algebras (plus extra structure) when is
A ∼= B? All C∗-algebras will be separable!

Theorem (Elliott 76’)

Unital AF C∗-algebras A, B are isomorphic if and only if
(K0(A),K0(A)

+, [1A]) ∼= (K0(B),K0(B)+, [1B]).



Roadmap to classification

A,B “well-behaved” C∗-algebras (plus extra structure) when is
A ∼= B?

Theorem (Elliott 76’)

Unital AF C∗-algebras A, B are isomorphic if and only if
(K0(A),K0(A)

+, [1A]) ∼= (K0(B),K0(B)+, [1B]).

Theorem (Kirchberg–Phillips 00’)

If A and B unital, separable, amenable, simple purely infinite
C∗-algebras satisfying the UCT then A ∼= B if and only if
((K0(A), [1A]),K1(A)) ∼= ((K0(B), [1B]),K1(B))



Roadmap to classification

Theorem (Kirchberg–Phillips 00’)

If A and B unital, Kirchberg algebras satisfying the UCT then
A ∼= B if and only if
((K0(A), [1A]),K1(A)) ∼= ((K0(B), [1B]),K1(B))



Roadmap to classification

What is the structure of proof? Let

Inv : C*alg → K

be a suitable functor to be used for classification.
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Let Φ : Inv(A) → Inv(B) be an isomorphism.

Existence: Show there exists a homomorphism ϕ : A→ B
inducing Φ and ψ : B → A inducing Φ−1.

Uniqueness: Show that since Inv(ψ ◦ ϕ) = Inv(idA) and
Inv(ϕ ◦ ψ) = Inv(idB) then ϕ ◦ ψ ≈a.u idB or ψ ◦ ϕ ≈a.u idA.



Roadmap to classification

Let Φ : Inv(A) → Inv(B) be an isomorphism.

Existence: Show there exists a homomorphism ϕ : A→ B
inducing Φ and ψ : B → A inducing Φ−1.

Uniqueness: Show that since Inv(ψ ◦ ϕ) = Inv(idA) and
Inv(ϕ ◦ ψ) = Inv(idB) then ϕ ◦ ψ ≈a.u idB or ψ ◦ ϕ ≈a.u idA.

Definition

ϕ, ψ : A→ B are approximately unitary equivalent (ϕ ≈a.u ψ) if
there exists un ∈ U(M(B)) such that

unϕ(a)u
∗
n −→
n→∞

ψ(a), ∀a ∈ A.



Roadmap to classification

Let Φ : Inv(A) → Inv(B) be an isomorphism.

Existence: Show there exists a homomorphism ϕ : A→ B
inducing Φ and ψ : B → A inducing Φ−1.

Uniqueness: Show that since Inv(ψ ◦ ϕ) = Inv(idA) and
Inv(ϕ ◦ ψ) = Inv(idB) then ϕ ◦ ψ ≈a.u idB or ψ ◦ ϕ ≈a.u idA.

Intertwining: As ψ and ϕ are mutually inverse to one another up
to approximate unitary equivalence, you may tweak them to make
them genuinely inverse to each other.



Roadmap to classification

Two sided intertwining Theorem

If ϕ : A→ B and ψ : B → A satisfy ψ ◦ ϕ ≈a.u idA and
ϕ ◦ ψ ≈a.u idB then there exists Φ ≈a.u ϕ and Ψ ≈a.u ψ such that
Ψ ◦ Φ = idA and Φ ◦Ψ = idB.



Roadmap to classification

Two sided intertwining Theorem

If ϕ : A→ B and ψ : B → A satisfy ψ ◦ ϕ ≈a.u idA and
ϕ ◦ ψ ≈a.u idB then there exists Φ ≈a.u ϕ and Ψ ≈a.u ψ such that
Ψ ◦ Φ = idA and Φ ◦Ψ = idB.

The quotient functor C*alg → C*alg/ ≈a.u is full on isomorphisms



Sketch proof

Theorem

The quotient functor C*alg → C*alg/ ≈a.u is full on isomorphisms
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ϕ
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idA // A
idA // A // . . . // A

B
ψ
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idB
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// B // . . . // B



Sketch proof

Theorem

The quotient functor C*alg → C*alg/ ≈a.u is full on isomorphisms

A

ϕ
��

idA // A
idA // A // . . . // A

B

≈F1,ε1

Ad(u1)ψ

88

idB
// B

idB
// B // . . . // B

ϕ ◦Ad(u1)ψ = Ad(ϕ(u1))ϕψ ≈a.u idB, “extendible”



Sketch proof

Theorem

The quotient functor C*alg → C*alg/ ≈a.u is full on isomorphisms

A

ϕ
��

idA // A

Ad(v1)ϕ
��

idA // A // . . . // A

B

≈F1,ε1

≈G1,ε1

88

idB
// B

idB
// B // . . . // B



Sketch proof

Theorem

The quotient functor C*alg → C*alg/ ≈a.u is full on isomorphisms

A

ϕ
��

idA // A

��

idA // A

��

// . . . // A

B

≈F1,ε1

≈G1,ε1

88

idB
// B

≈F2,ε2

≈G2,ε2

88

idB
// B // . . . // B

choosing εi summable, ∪Fi = A and ∪Gi = B the construction
yields that

lim
n→∞

Ad(vn)ϕ

lim
n→∞

Ad(un)ψ

exist and are mutually inverse.



Sketch proof

Theorem

The quotient functor C*alg → C*alg/ ≈a.u is full on isomorphisms

We required:

A well-behaved notion of unitary equivalence.

A complete, metrisable topology at the level of morphisms.

“Towards a theory of classification”-Elliott 10’



Classifying Γ-C∗-algebras

Theorem (Kirchberg–Phillips 00’)

If A and B are unital Kirchberg algebras satisfying the UCT then
A ∼= B iff ((K0(A), [1A]),K1(A)) ∼= ((K0(B), [1B]),K1(B)).



Classifying Γ-C∗-algebras

Theorem (Kirchberg–Phillips 00’)

If A and B are unital Kirchberg algebras satisfying the UCT then
A ∼= B if and only if there is a pointed isomorphism in KK(A,B).



Classifying Γ-C∗-algebras

Theorem (Kirchberg–Phillips 00’)

If A and B are unital Kirchberg algebras satisfying the UCT then
A ∼= B if and only if there is a pointed isomorphism in KK(A,B).

Theorem (Gabe–Szabó 22’)

If α : Γ ↷ A and β : Γ ↷ B are actions of countable, discrete
amenable groups on unital, Kirchberg algebras then α ≃ β if and
only if there exists a pointed isomorphism in KKΓ(α, β).



Classifying Γ-C∗-algebras

Theorem (Gabe–Szabó 22’)

If α : Γ ↷ A and β : Γ ↷ B are actions of countable, discrete
amenable groups on unital, Kirchberg algebras then α ≃ β if and
only if there exists a pointed isomorphism in KKΓ(α, β).

This also follows an existence–uniqueness–intertwining type
strategy!

To make sense of this one needs the right notion of morphism
between Γ-C∗-algebras and a notion of Γ-unitary equivalence.



Classifying Γ-C∗-algebras

To make sense of this one needs the right notion of morphism
between Γ-C∗-algebras and a notion of Γ-unitary equivalence.

Definition (Szabó 21’)

Let Γ be a countable discrete group and α : Γ ↷ A, β : Γ ↷ B
group actions. A cocycle morphism from α to β consists of a
∗-homomorphism ϕ : A→ B and unitaries ug ∈ U(M(B)) for
g ∈ Γ s.t.

1 ϕαg = Ad(ug)βgϕ
2 ugαg(uh) = ugh

(ϕ,u) is a cocycle conjugacy if ϕ is an isomorphism, in which case
we write α ≃ β.
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∗-homomorphism ϕ : A→ B and unitaries ug ∈ U(M(B)) for
g ∈ Γ s.t.
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2 ugαg(uh) = ugh

(ϕ,u) is a cocycle conjugacy if ϕ is an isomorphism, in which case
we write α ≃ β.

Definition (Szabó 21’)

The category C∗
Γ has objects Γ-C∗-algebas, morphisms cocycle

morphisms with composition

(ψ,v) ◦ (ϕ,u) = (ψϕ, ψ(u)v)



Classifying Γ-C∗-algebras

Definition (Szabó 21’)

The category C∗
Γ has objects Γ-C∗-algebas, morphisms cocycle

morphisms with composition

(ψ,v) ◦ (ϕ,u) = (ψϕ, ψ(u)v)

Proposition (Szabó 21’)

The category C∗
Γ has a notion of unitary equivalence given by

(Ad(u), uαg(u
∗)) ∈ EndC∗

Γ
(α) u ∈ U(M(A))

Also C∗
Γ admits a complete metrisable toplogy at the level of

morphisms yielding a notion of approximately unitary equivalence
denoted ≈Γ.



Classifying Γ-C∗-algebras

Definition (Szabó 21’)

The category C∗
Γ has objects Γ-C∗-algebas, morphisms extendible

cocycle morphisms

Proposition (Szabó 21’)

The category C∗
Γ has a notion of unitary equivalence given by

(Ad(u), uαg(u
∗)) ∈ EndC∗

Γ
(α) u ∈ U(M(A))

Also C∗
Γ admits a complete metrisable toplogy at the level of

morphisms yielding a notion of approximately unitary equivalence
denoted ≈Γ.

Theorem (Szabó 21’)

For Γ countable and discrete, the quotient functor C∗
Γ → C∗

Γ/ ≈Γ

is full on isomorphisms.
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We further assume that C is semisimple and has countably many
isomorphism classes of simple objects.



Actions of tensor categories

Let (C,⊗) be a C∗-tensor category e.g. Rep(Γ) or Hilb(Γ), we
want to consider intertwining for C-C∗-algebras.

We further assume that C is semisimple and has countably many
isomorphism classes of simple objects.

We let (Corr(A),⊠op) be the C∗-tensor category of non
degenerate A-A-correspondences α : A→ L(XA) under the
opposite internal tensor product.



Actions of tensor categories

We let (Corr(A),⊠op) be the C∗-tensor category of non
degenerate A-A-correspondences α : A→ L(XA) under the
opposite internal tensor product.

Definition

An action of C on A is a C∗-tensor functor

(F, J) : (C,⊗) → (Corr(A),⊠op)

with F (1C) = A where JX,Y : F (X)⊠op F (Y ) ∼= F (X ⊗ Y ).



Actions of tensor categories

Definition

An action of C on A is a C∗-tensor functor

(F, J) : (C,⊗) → (Corr(A),⊠op)

with F (1C) = A where JX,Y : F (X)⊠op F (Y ) ∼= F (X ⊗ Y ).

e.g. if α : Γ ↷ A is an action then

Hilb(Γ) → Corr(A)

Cg 7→ αgA

with the isomorphisms αh
A⊠ αgA

∼= αgαh
A given by

a⊠ b 7→ αg(a)b is an action.



Actions of tensor categories

Definition

An action of C on A is a C∗-tensor functor

(F, J) : (C,⊗) → (Corr(A),⊠op)

with F (1C) = A where JX,Y : F (X)⊠op F (Y ) ∼= F (X ⊗ Y ).

Definition

A C-cocycle morphism (ϕ,u) : (F, J,A) → (G, I,B) consists of a
∗-homomorphism ϕ : A→ B and coherent, natural, (possibly
non-adjointable) bimodular isometries

uX : F (X)⊠ ϕB → ϕB ⊠G(X), X ∈ C.

With u1C(a⊠ b) = ϕ(a)b. It is moreover called a cocycle
conjugacy if both ϕ is an isomorphism and uX are unitaries.



Actions of tensor categories

Definition

A C-cocycle morphism (ϕ,u) : (F, J,A) → (G, I,B) consists of a
∗-homomorphism ϕ : A→ B and coherent, natural, (possibly
non-adjointable) bimodular isometries

uX : F (X)⊠ ϕB → ϕB ⊠G(X), X ∈ C.

With u1C(a⊠ b) = ϕ(a)b.

Any non degenerate Hilb(Γ)-cocycle morphism between group
actions α : Γ ↷ A and β : Γ ↷ B is given by a non degenerate
∗-homomorphism ϕ and bimodular isometries

ug : ϕαgB → βgϕB

if we assume ug is moreover a unitary then it is given by b 7→ v
∗
gb

for some unitary vg ∈ U(M(B)) with ϕαg = Ad(vg)βgϕ. The
cocycle identity for vg holds by coherence.



Actions of tensor categories

Definition

A C-cocycle morphism (ϕ,u) : (F, J,A) → (G, I,B) consists of a
∗-homomorphism ϕ : A→ B and coherent, natural, (possibly
non-adjointable) bimodular isometries

uX : F (X)⊠ ϕB → ϕB ⊠G(X), X ∈ C.

With u1C(a⊠ b) = ϕ(a)b.

There is a much more user-friendly version. Note one can induce
linear maps F (X) → G(X) from any cocycle morphism

F (X) → F (X)⊠ ϕB
uX−−→ ϕB ⊠G(X) → G(X)



Actions of tensor categories

Theorem (G., Neagu, see also Chen, Jones, Hernández Palomares)

Let ϕ : A→ B be a ∗-homomorphism, the data of admissible
cocycle morphisms (ϕ,u) : (F, J,A) → (G, I,B) is equivalent to a
family of linear maps hX : F (X) → G(X) such that

hX(a▷ ξ ◁ b) = ϕ(a)▷ ξ ◁ ϕ(b),
⟨hX(ξ), hX(η)⟩ = ϕ(⟨ξ, η⟩),
hY ◦ F (f) = G(f) ◦ hX , for f ∈ Hom(X,Y )
IX,Y ◦ hY ⊠ hX = hX⊗Y ◦ JX,Y ,
h1C = ϕ



Actions of tensor categories

Theorem (G., Neagu, see also Chen, Jones, Hernández Palomares)

Let ϕ : A→ B be a ∗-homomorphism, the data of admissible
cocycle morphisms (ϕ,u) : (F, J,A) → (G, I,B) is equivalent to a
family of linear maps hX : F (X) → G(X) such that

hX(a▷ ξ ◁ b) = ϕ(a)▷ ξ ◁ ϕ(b), bimodular
⟨hX(ξ), hX(η)⟩ = ϕ(⟨ξ, η⟩), isometric
hY ◦ F (f) = G(f) ◦ hX , natural
IX,Y ◦ hY ⊠ hX = hX⊗Y ◦ JX,Y , coherent
h1C = ϕ



Actions of tensor categories

Definition

A cocycle morphism from (F, J,A) to (G, I,B) consists of a
∗-homomorphism ϕ : A→ B and linear maps hX for X ∈ C s.t.

hX(a▷ ξ ◁ b) = ϕ(a)▷ ξ ◁ ϕ(b),
⟨hX(ξ), hX(η)⟩ = ϕ(⟨ξ, η⟩),
hY ◦ F (f) = G(f) ◦ hX ,
IX,Y ◦ hY ⊠ hX = hX⊗Y ◦ JX,Y ,
h1C = ϕ

Straightforward composition (ϕ, h) ◦ (ψ, l) = (ϕψ, h ◦ l).



Actions of tensor categories

Definition

A cocycle morphism from (F, J,A) to (G, I,B) consists of a
∗-homomorphism ϕ : A→ B and linear maps hX for X ∈ C s.t.

hX(a▷ ξ ◁ b) = ϕ(a)▷ ξ ◁ ϕ(b),
⟨hX(ξ), hX(η)⟩ = ϕ(⟨ξ, η⟩),
hY ◦ F (f) = G(f) ◦ hX ,
IX,Y ◦ hY ⊠ hX = hX⊗Y ◦ JX,Y ,
h1C = ϕ

Straightforward composition (ϕ, h) ◦ (ψ, l) = (ϕψ, h ◦ l).

have a notion of inner automorphisms Ad(u) with linear maps
Ad(u)X(ξ) = u▷ ξ ◁ u∗ for u ∈ U(M(A)), ξ ∈ F (X).



Actions of tensor categories

Definition

Let C∗
C be the category of C-C∗-algebras with extendible cocycle

morphisms.



Actions of tensor categories

Definition

Let C∗
C be the category of C-C∗-algebras with extendible cocycle

morphisms.

have a notion of inner automorphisms Ad(u) with linear maps
Ad(u)X(ξ) = u▷ ξ ◁ u∗ for u ∈ U(M(A)), ξ ∈ F (X).

the topology of the space of cocycle morphisms defined by the
convergence

(ϕλ, hλ) → (ϕ, h) ⇐⇒ hXλ → hX pointwise

is complete and metrisable.



Actions of tensor categories

Theorem (G, Neagu)

Let C be a semisimple C∗-tensor category with countably many
isomorphism classes of simple objects. Then the quotient functor

C∗
C → C∗

C/ ≈C

is surjective on isomorphisms.



Outline

1 What is intertwining and why?

2 C∗-tensor category equivariant intertwining

3 Applications



Equivariant Z-stability

Classification Theorem
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the UCT are classified by K-theory and traces.
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Classification Theorem
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the UCT are classified by K-theory and traces.
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Equivariant Z-stability

If A is Z-stable and Γ ↷ A when is A⋊ Γ Z-stable?

Definition

A group action α : G↷ A is called (equivariantly) Z-stable if
α⊗ idZ ≃ α.



Equivariant Z-stability

If A is Z-stable and Γ ↷ A when is A⋊ Γ Z-stable?

Definition

A group action α : G↷ A is called (equivariantly) Z-stable if
α⊗ idZ ≃ α.

“Nice” inclusions A ⊂ B come from actions of unitary tensor
categories and generalised crossed products.



Equivariant Z-stability

F stabilised by Z

F ⊗ idZ : C → Corr(A⊗Z)

X 7→ F (X)⊗Z
f 7→ F (f)⊗ idZ



Equivariant Z-stability

F stabilised by Z

F ⊗ idZ : C → Corr(A⊗Z)

X 7→ F (X)⊗Z
f 7→ F (f)⊗ idZ

Definition

F is Z-stable if F ≃ F ⊗ idZ .



Equivariant Z-stability

Theorem (Kirchberg, see Toms–Winter)

Let A be a unital, separable C∗-algebra. Then

A⊗Z ∼= A ⇐⇒ Z ↪→ A∞ ∩A′ unitaly.



Equivariant Z-stability

Theorem (Evington, G., Jones)

Let F : C ↷ A be an action of a unitary tensor category with
countably many isomorphism classes of simple objects on a unital,
separable C∗-algebra. Then

F ⊗ idZ ≃ F ⇐⇒ Z ↪→ (A∞ ∩A′)F unitaly

where

(A∞ ∩A′)F = {a ∈ A∞ : a▷ ξ = ξ ◁ a, ∀X ∈ C, ξ ∈ F (X)}
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Theorem (Evington, G., Jones)

Let F : C ↷ A be an action of a unitary tensor category with
countably many isomorphism classes of simple objects on a unital,
separable C∗-algebra. Then

F ⊗ idZ ≃ F ⇐⇒ Z ↪→ (A∞ ∩A′)F unitaly

Sketch proof

Let’s consider the non-equivariant version first. Want to tweak
idA⊗1Z up to approximate unitary equivalence to be surjective.



Equivariant Z-stability

Theorem (Evington, G., Jones)

Let F : C ↷ A be an action of a unitary tensor category with
countably many isomorphism classes of simple objects on a unital,
separable C∗-algebra. Then

F ⊗ idZ ≃ F ⇐⇒ Z ↪→ (A∞ ∩A′)F unitaly

Sketch proof

Let’s consider the non-equivariant version first. Want to tweak
idA⊗1Z up to approximate unitary equivalence to be surjective.

By hypothesis one can show that for any finite F ⊂ A,
G ⊂ A⊗Z, ε > 0 there exists v ∈ U(A⊗Z) with

∥Ad(v)(a⊗ 1)− a⊗ 1∥ ≈
F,ε

0, dist(Ad(v∗)G,A⊗ 1) < ϵ



Equivariant Z-stability

Sketch proof

By hypothesis one can show that for any finite F ⊂ A,
G ⊂ A⊗Z, ε > 0 there exists v ∈ U(A⊗Z) with

∥Ad(v)(a⊗ 1)− a⊗ 1∥ ≈
F,ε

0, dist(Ad(v∗)G,A⊗ 1) < ϵ

A⊗Z // A⊗Z // A⊗Z . . . // A⊗Z

A

idA ⊗1

OO

// A // A . . . // A



Equivariant Z-stability

Sketch proof

By hypothesis one can show that for any finite F ⊂ A,
G ⊂ A⊗Z, ε > 0 there exists v ∈ U(A⊗Z) with

∥Ad(v)(a⊗ 1)− a⊗ 1∥ ≈
F,ε

0, dist(Ad(v∗)G,A⊗ 1) < ϵ

A⊗Z //

G1⊆

A⊗Z // A⊗Z . . . // A⊗Z

A

idA ⊗1

OO

// A

Ad(v1)(idA ⊗1)≈F1,ϵ1

OO

// A . . . // A



Equivariant Z-stability

Sketch proof

By hypothesis one can show that for any finite F ⊂ A,
G ⊂ A⊗Z, ε > 0 there exists v ∈ U(A⊗Z) with

∥Ad(v)(a⊗ 1)− a⊗ 1∥ ≈
F,ε

0, dist(Ad(v∗)G,A⊗ 1) < ϵ

A⊗Z //

G1⊆

A⊗Z //

G2⊆

A⊗Z . . . // A⊗Z

A

idA ⊗1

OO

// A

≈F1,ϵ1

OO

// A . . .

Ad(v1v2)(idA ⊗1)≈F2,ϵ2

OO

// A



Equivariant Z-stability

Sketch proof

One can show that for any finite K ∈ Irr(C), FX ⊂ F (X),
GX ⊂ A⊗Z, ε > 0 there exists v ∈ U(A⊗Z) s.t. for X ∈ K

∥Ad(v)X(ξ⊗1)−ξ⊗1∥ ≈
FX ,ε

0, dist(Ad(v∗)XG
X , F (X)⊗1) < ϵ

F (X)⊗Z //

GX
1⊆

F (X)⊗Z //

GX
2⊆

F (X)⊗Z . . . // F (X)⊗Z

F (X)

OO

// F (X)

≈
FX
1 ,ϵ1

OO

// F (X) . . .

Ad(v1v2)(idF (X) ⊗1)≈
FX
2 ,ϵ2

OO

// F (X)



Equivariant Z-stability

Theorem (Evington, G., Jones)

Let F : C ↷ A be an action of a unitary tensor category with
countably many isomorphism classes of simple objects on a unital,
separable C∗-algebra then
F is Z-stable ⇔ Z ↪→ (A∞ ∩A′)F unitaly

The right hand side is checkable in practice! We can check it for
“stationary AF-actions” of fusion categories for example.



Thank you!
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