Intertwining techniques for actions of C*-tensor categories

Sergio Girón Pacheco

KU Leuven

Outline

1 What is intertwining and why?

2 C*-tensor category equivariant intertwining

3 Applications

Outline

1 What is intertwining and why?

2 C*-tensor category equivariant intertwining

3 Applications

A,B "well-behaved" C*-algebras (plus extra structure) when is $A\cong B$?

A,B "well-behaved" C*-algebras (plus extra structure) when is $A\cong B$? All C*-algebras will be separable!

Theorem (Elliott 76')

Unital AF C*-algebras A, B are isomorphic if and only if $(K_0(A), K_0(A)^+, [1_A]) \cong (K_0(B), K_0(B)^+, [1_B])$.

A,B "well-behaved" C*-algebras (plus extra structure) when is $A\cong B$?

Theorem (Elliott 76')

Unital AF C*-algebras A, B are isomorphic if and only if $(K_0(A), K_0(A)^+, [1_A]) \cong (K_0(B), K_0(B)^+, [1_B])$.

Theorem (Kirchberg–Phillips 00')

If A and B unital, separable, amenable, simple purely infinite C^* -algebras satisfying the UCT then $A \cong B$ if and only if $((K_0(A),[1_A]),K_1(A))\cong ((K_0(B),[1_B]),K_1(B))$

Theorem (Kirchberg-Phillips 00')

If A and B unital, Kirchberg algebras satisfying the UCT then $A\cong B$ if and only if $((K_0(A),[1_A]),K_1(A))\cong ((K_0(B),[1_B]),K_1(B))$

What is the structure of proof? Let

$$\mathrm{Inv}: \textbf{C*alg} \to \mathcal{K}$$

be a suitable functor to be used for classification.

Let $\Phi: \operatorname{Inv}(A) \to \operatorname{Inv}(B)$ be an isomorphism.

Let $\Phi: \operatorname{Inv}(A) \to \operatorname{Inv}(B)$ be an isomorphism.

Existence: Show there exists a homomorphism $\phi:A\to B$ inducing Φ and $\psi:B\to A$ inducing $\Phi^{-1}.$

Let $\Phi: \operatorname{Inv}(A) \to \operatorname{Inv}(B)$ be an isomorphism.

Existence: Show there exists a homomorphism $\phi:A\to B$ inducing Φ and $\psi:B\to A$ inducing Φ^{-1} .

Uniqueness: Show that since $\operatorname{Inv}(\psi \circ \phi) = \operatorname{Inv}(\operatorname{id}_A)$ and $\operatorname{Inv}(\phi \circ \psi) = \operatorname{Inv}(\operatorname{id}_B)$ then $\phi \circ \psi \approx_{a.u} \operatorname{id}_B$ or $\psi \circ \phi \approx_{a.u} \operatorname{id}_A$.

Let $\Phi : \operatorname{Inv}(A) \to \operatorname{Inv}(B)$ be an isomorphism.

Existence: Show there exists a homomorphism $\phi:A\to B$ inducing Φ and $\psi:B\to A$ inducing $\Phi^{-1}.$

Uniqueness: Show that since $\operatorname{Inv}(\psi \circ \phi) = \operatorname{Inv}(\operatorname{id}_A)$ and $\operatorname{Inv}(\phi \circ \psi) = \operatorname{Inv}(\operatorname{id}_B)$ then $\phi \circ \psi \approx_{a.u} \operatorname{id}_B$ or $\psi \circ \phi \approx_{a.u} \operatorname{id}_A$.

Definition

 $\phi, \psi: A \to B$ are approximately unitary equivalent $(\phi \approx_{a.u} \psi)$ if there exists $u_n \in U(M(B))$ such that

$$u_n \phi(a) u_n^* \underset{n \to \infty}{\longrightarrow} \psi(a), \quad \forall a \in A.$$

Let $\Phi : \operatorname{Inv}(A) \to \operatorname{Inv}(B)$ be an isomorphism.

Existence: Show there exists a homomorphism $\phi:A\to B$ inducing Φ and $\psi:B\to A$ inducing $\Phi^{-1}.$

Uniqueness: Show that since $\operatorname{Inv}(\psi \circ \phi) = \operatorname{Inv}(\operatorname{id}_A)$ and $\operatorname{Inv}(\phi \circ \psi) = \operatorname{Inv}(\operatorname{id}_B)$ then $\phi \circ \psi \approx_{a.u} \operatorname{id}_B$ or $\psi \circ \phi \approx_{a.u} \operatorname{id}_A$.

Intertwining: As ψ and ϕ are mutually inverse to one another up to approximate unitary equivalence, you may tweak them to make them genuinely inverse to each other.

Two sided intertwining Theorem

If $\phi:A\to B$ and $\psi:B\to A$ satisfy $\psi\circ\phi\approx_{a.u}\mathrm{id}_A$ and $\phi\circ\psi\approx_{a.u}\mathrm{id}_B$ then there exists $\Phi\approx_{a.u}\phi$ and $\Psi\approx_{a.u}\psi$ such that $\Psi\circ\Phi=\mathrm{id}_A$ and $\Phi\circ\Psi=\mathrm{id}_B$.

Two sided intertwining Theorem

If $\phi:A\to B$ and $\psi:B\to A$ satisfy $\psi\circ\phi\approx_{a.u}\mathrm{id}_A$ and $\phi\circ\psi\approx_{a.u}\mathrm{id}_B$ then there exists $\Phi\approx_{a.u}\phi$ and $\Psi\approx_{a.u}\psi$ such that $\Psi\circ\Phi=\mathrm{id}_A$ and $\Phi\circ\Psi=\mathrm{id}_B$.

The quotient functor $\mathbf{C*alg} \to \mathbf{C*alg}/\approx_{a.u}$ is full on isomorphisms

Theorem

The quotient functor $\mathbf{C*alg} \to \mathbf{C*alg}/\approx_{a.u}$ is full on isomorphisms

Theorem

The quotient functor $\mathbf{C*alg} \to \mathbf{C*alg}/\approx_{a.u}$ is full on isomorphisms

 $\phi \circ \operatorname{Ad}(u_1)\psi = \operatorname{Ad}(\phi(u_1))\phi\psi \approx_{a.u} \operatorname{id}_B$, "extendible"

Theorem

The quotient functor $\mathbf{C*alg} \to \mathbf{C*alg}/\approx_{a.u}$ is full on isomorphisms

Theorem

The quotient functor $\mathbf{C^*alg} \to \mathbf{C^*alg}/\approx_{a.u}$ is full on isomorphisms

choosing ε_i summable, $\overline{\cup F_i}=A$ and $\overline{\cup G_i}=B$ the construction yields that

$$\lim_{n \to \infty} \operatorname{Ad}(v_n) \phi$$
$$\lim_{n \to \infty} \operatorname{Ad}(u_n) \psi$$

exist and are mutually inverse.

Theorem

The quotient functor $\mathbf{C*alg} \to \mathbf{C*alg}/\approx_{a.u}$ is full on isomorphisms

We required:

- A well-behaved notion of unitary equivalence.
- A complete, metrisable topology at the level of morphisms.

"Towards a theory of classification"-Elliott 10"

Theorem (Kirchberg-Phillips 00')

If A and B are unital Kirchberg algebras satisfying the UCT then $A \cong B$ iff $((K_0(A), [1_A]), K_1(A)) \cong ((K_0(B), [1_B]), K_1(B))$.

Theorem (Kirchberg-Phillips 00')

If A and B are unital Kirchberg algebras satisfying the UCT then $A\cong B$ if and only if there is a pointed isomorphism in $\mathrm{KK}(A,B)$.

Theorem (Kirchberg-Phillips 00')

If A and B are unital Kirchberg algebras satisfying the UCT then $A\cong B$ if and only if there is a pointed isomorphism in $\mathrm{KK}(A,B)$.

Theorem (Gabe-Szabó 22')

If $\alpha:\Gamma\curvearrowright A$ and $\beta:\Gamma\curvearrowright B$ are actions of countable, discrete amenable groups on unital, Kirchberg algebras then $\alpha\simeq\beta$ if and only if there exists a pointed isomorphism in $KK^\Gamma(\alpha,\beta)$.

Theorem (Gabe–Szabó 22')

If $\alpha:\Gamma\curvearrowright A$ and $\beta:\Gamma\curvearrowright B$ are actions of countable, discrete amenable groups on unital, Kirchberg algebras then $\alpha\simeq\beta$ if and only if there exists a pointed isomorphism in $KK^{\Gamma}(\alpha,\beta)$.

This also follows an existence–uniqueness–intertwining type strategy!

To make sense of this one needs the right notion of morphism between Γ -C*-algebras and a notion of Γ -unitary equivalence.

To make sense of this one needs the right notion of morphism between Γ -C*-algebras and a notion of Γ -unitary equivalence.

Definition (Szabó 21')

Let Γ be a countable discrete group and $\alpha:\Gamma\curvearrowright A,\ \beta:\Gamma\curvearrowright B$ group actions. A cocycle morphism from α to β consists of a *-homomorphism $\phi:A\to B$ and unitaries $\mathfrak{u}_g\in U(M(B))$ for $g\in\Gamma$ s.t.

 (ϕ, \mathbf{u}) is a cocycle conjugacy if ϕ is an isomorphism, in which case we write $\alpha \simeq \beta$.

Definition (Szabó 21')

Let Γ be a countable discrete group and $\alpha:\Gamma\curvearrowright A,\ \beta:\Gamma\curvearrowright B$ group actions. A cocycle morphism from α to β consists of a *-homomorphism $\phi:A\to B$ and unitaries $\mathfrak{u}_g\in U(M(B))$ for $g\in\Gamma$ s.t.

- $\bullet \phi \alpha_g = \mathrm{Ad}(\mathfrak{u}_g) \beta_g \phi$

 (ϕ, \mathbf{u}) is a cocycle conjugacy if ϕ is an isomorphism, in which case we write $\alpha \simeq \beta$.

Definition (Szabó 21')

The category C_{Γ}^* has objects Γ - C^* -algebra, morphisms cocycle morphisms with composition

$$(\psi, \mathbf{v}) \circ (\phi, \mathbf{u}) = (\psi \phi, \psi(\mathbf{u}) \mathbf{v})$$

Definition (Szabó 21')

The category C^*_{Γ} has objects Γ - C^* -algebra, morphisms cocycle morphisms with composition

$$(\psi, \mathbf{v}) \circ (\phi, \mathbf{u}) = (\psi \phi, \psi(\mathbf{u}) \mathbf{v})$$

Proposition (Szabó 21')

The category C_{Γ}^* has a notion of unitary equivalence given by

$$(\mathrm{Ad}(u), u\alpha_g(u^*)) \in \mathrm{End}_{C_{\Gamma}^*}(\alpha) \quad u \in U(M(A))$$

Also C_{Γ}^* admits a complete metrisable toplogy at the level of morphisms yielding a notion of approximately unitary equivalence denoted \approx_{Γ} .

Definition (Szabó 21')

The category C^*_{Γ} has objects Γ - C^* -algebras, morphisms extendible cocycle morphisms

Proposition (Szabó 21')

The category C^*_Γ has a notion of unitary equivalence given by

$$(\mathrm{Ad}(u), u\alpha_g(u^*)) \in \mathrm{End}_{C_{\Gamma}^*}(\alpha) \quad u \in U(M(A))$$

Also C_{Γ}^* admits a complete metrisable toplogy at the level of morphisms yielding a notion of approximately unitary equivalence denoted \approx_{Γ} .

Theorem (Szabó 21')

For Γ countable and discrete, the quotient functor $C_{\Gamma}^* \to C_{\Gamma}^*/\approx_{\Gamma}$ is full on isomorphisms.

Outline

What is intertwining and why?

2 C*-tensor category equivariant intertwining

Applications

Let (C, \otimes) be a C*-tensor category e.g. $\operatorname{Rep}(\Gamma)$ or $\operatorname{Hilb}(\Gamma)$, we want to consider intertwining for C-C*-algebras.

Let (\mathcal{C}, \otimes) be a C*-tensor category e.g. $\operatorname{Rep}(\Gamma)$ or $\operatorname{Hilb}(\Gamma)$, we want to consider intertwining for \mathcal{C} -C*-algebras.

We further assume that $\mathcal C$ is semisimple and has countably many isomorphism classes of simple objects.

Let (C, \otimes) be a C*-tensor category e.g. $\operatorname{Rep}(\Gamma)$ or $\operatorname{Hilb}(\Gamma)$, we want to consider intertwining for C-C*-algebras.

We further assume that $\mathcal C$ is semisimple and has countably many isomorphism classes of simple objects.

We let $(\operatorname{Corr}(A), \boxtimes^{\operatorname{op}})$ be the C*-tensor category of non degenerate A-A-correspondences $\alpha: A \to \mathcal{L}(X_A)$ under the opposite internal tensor product.

We let $(\operatorname{Corr}(A), \boxtimes^{\operatorname{op}})$ be the C*-tensor category of non degenerate A-A-correspondences $\alpha: A \to \mathcal{L}(X_A)$ under the opposite internal tensor product.

Definition

An action of C on A is a C^* -tensor functor

$$(F,J):(\mathcal{C},\otimes)\to(\operatorname{Corr}(A),\boxtimes^{\operatorname{op}})$$

with $F(1_{\mathcal{C}}) = A$ where $J_{X,Y} : F(X) \boxtimes^{\mathrm{op}} F(Y) \cong F(X \otimes Y)$.

Definition

An action of C on A is a C^* -tensor functor

$$(F,J):(\mathcal{C},\otimes)\to(\operatorname{Corr}(A),\boxtimes^{\operatorname{op}})$$

with
$$F(1_{\mathcal{C}}) = A$$
 where $J_{X,Y} : F(X) \boxtimes^{\mathrm{op}} F(Y) \cong F(X \otimes Y)$.

e.g. if $\alpha:\Gamma\curvearrowright A$ is an action then

$$\operatorname{Hilb}(\Gamma) \to \operatorname{Corr}(A)$$
$$\mathbb{C}_g \mapsto {}_{\alpha_g} A$$

with the isomorphisms $\alpha_h A \boxtimes \alpha_g A \cong \alpha_g \alpha_h A$ given by $a \boxtimes b \mapsto \alpha_g(a)b$ is an action.

Definition

An action of C on A is a C^* -tensor functor

$$(F,J):(\mathcal{C},\otimes)\to(\operatorname{Corr}(A),\boxtimes^{\operatorname{op}})$$

with $F(1_{\mathcal{C}}) = A$ where $J_{X,Y} : F(X) \boxtimes^{\mathrm{op}} F(Y) \cong F(X \otimes Y)$.

Definition

A ${\it C}$ -cocycle morphism $(\phi, {\it u}): (F,J,A) \to (G,I,B)$ consists of a *-homomorphism $\phi: A \to B$ and coherent, natural, (possibly non-adjointable) bimodular isometries

$$u_X : F(X) \boxtimes_{\phi} B \to {}_{\phi} B \boxtimes G(X), \quad X \in \mathcal{C}.$$

With $\mathfrak{u}_{1c}(a\boxtimes b)=\phi(a)b$. It is moreover called a cocycle conjugacy if both ϕ is an isomorphism and \mathfrak{u}_X are unitaries.

Definition

A ${\it C}$ -cocycle morphism $(\phi, {\it u}): (F,J,A) \to (G,I,B)$ consists of a *-homomorphism $\phi: A \to B$ and coherent, natural, (possibly non-adjointable) bimodular isometries

$$u_X : F(X) \boxtimes_{\phi} B \to_{\phi} B \boxtimes G(X), \quad X \in \mathcal{C}.$$

With $u_{1_{\mathcal{C}}}(a \boxtimes b) = \phi(a)b$.

Any non degenerate $\operatorname{Hilb}(\Gamma)$ -cocycle morphism between group actions $\alpha:\Gamma\curvearrowright A$ and $\beta:\Gamma\curvearrowright B$ is given by a non degenerate *-homomorphism ϕ and bimodular isometries

$$\mathbf{u}_g: _{\phi\alpha_g}B \to _{\beta_g\phi}B$$

if we assume \mathbb{u}_g is moreover a unitary then it is given by $b\mapsto \mathbb{v}_g^*b$ for some unitary $\mathbb{v}_g\in U(M(B))$ with $\phi\alpha_g=\mathrm{Ad}(\mathbb{v}_g)\beta_g\phi$. The cocycle identity for \mathbb{v}_g holds by coherence.

Definition

A ${\it C}$ -cocycle morphism $(\phi, {\it u}): (F,J,A) \to (G,I,B)$ consists of a *-homomorphism $\phi:A\to B$ and coherent, natural, (possibly non-adjointable) bimodular isometries

$$u_X : F(X) \boxtimes_{\phi} B \to_{\phi} B \boxtimes G(X), \quad X \in \mathcal{C}.$$

With $u_{1_{\mathcal{C}}}(a \boxtimes b) = \phi(a)b$.

There is a much more user-friendly version. Note one can induce linear maps $F(X) \to G(X)$ from any cocycle morphism

$$F(X) \to F(X) \boxtimes_{\phi} B \xrightarrow{u_X} {}_{\phi} B \boxtimes G(X) \to G(X)$$

Theorem (G., Neagu, see also Chen, Jones, Hernández Palomares)

Let $\phi:A\to B$ be a *-homomorphism, the data of admissible cocycle morphisms $(\phi,\mathtt{u}):(F,J,A)\to (G,I,B)$ is equivalent to a family of linear maps $h^X:F(X)\to G(X)$ such that

- $h^X(a \rhd \xi \lhd b) = \phi(a) \rhd \xi \lhd \phi(b),$
- $\langle h^X(\xi), h^X(\eta) \rangle = \phi(\langle \xi, \eta \rangle),$
- $h^Y \circ F(f) = G(f) \circ h^X$, for $f \in \text{Hom}(X, Y)$
- $\bullet \ I_{X,Y} \circ h^Y \boxtimes h^X = h^{X \otimes Y} \circ J_{X,Y},$
- $\bullet \ h^{1_{\mathcal{C}}} = \phi$

Theorem (G., Neagu, see also Chen, Jones, Hernández Palomares)

Let $\phi:A\to B$ be a *-homomorphism, the data of admissible cocycle morphisms $(\phi,\mathfrak{u}):(F,J,A)\to (G,I,B)$ is equivalent to a family of linear maps $h^X:F(X)\to G(X)$ such that

- $h^X(a \rhd \xi \lhd b) = \phi(a) \rhd \xi \lhd \phi(b)$, bimodular
- $\langle h^X(\xi), h^X(\eta) \rangle = \phi(\langle \xi, \eta \rangle)$, isometric
- $h^Y \circ F(f) = G(f) \circ h^X$, natural
- \bullet $I_{X,Y} \circ h^Y \boxtimes h^X = h^{X \otimes Y} \circ J_{X,Y}$, coherent
- $\bullet \ h^{1_{\mathcal{C}}} = \phi$

Definition

A cocycle morphism from (F,J,A) to (G,I,B) consists of a

- *-homomorphism $\phi:A \to B$ and linear maps h^X for $X \in \mathcal{C}$ s.t.
 - $h^X(a \rhd \xi \lhd b) = \phi(a) \rhd \xi \lhd \phi(b),$
 - $\langle h^X(\xi), h^X(\eta) \rangle = \phi(\langle \xi, \eta \rangle),$
 - $h^Y \circ F(f) = G(f) \circ h^X$,
 - $\bullet \ I_{X,Y} \circ h^Y \boxtimes h^X = h^{X \otimes Y} \circ J_{X,Y},$
 - $h^{1_c} = \phi$
 - Straightforward composition $(\phi, h) \circ (\psi, l) = (\phi \psi, h \circ l)$.

Definition

A cocycle morphism from (F, J, A) to (G, I, B) consists of a *-homomorphism $\phi : A \to B$ and linear maps h^X for $X \in \mathcal{C}$ s.t.

- $h^X(a \rhd \xi \lhd b) = \phi(a) \rhd \xi \lhd \phi(b),$
- $\langle h^X(\xi), h^X(\eta) \rangle = \phi(\langle \xi, \eta \rangle),$
- $\bullet \ h^Y \circ F(f) = G(f) \circ h^X,$
- $I_{X,Y} \circ h^Y \boxtimes h^X = h^{X \otimes Y} \circ J_{X,Y}$,
- $h^{1c} = \phi$
- Straightforward composition $(\phi, h) \circ (\psi, l) = (\phi \psi, h \circ l)$.
- have a notion of inner automorphisms $\mathrm{Ad}(u)$ with linear maps $\mathrm{Ad}(u)_X(\xi) = u \rhd \xi \lhd u^*$ for $u \in U(M(A)), \ \xi \in F(X)$.

Definition

Let $C^*_{\mathcal{C}}$ be the category of $\mathcal{C}\text{-}C^*$ -algebras with extendible cocycle morphisms.

Definition

Let $C^*_{\mathcal{C}}$ be the category of $\mathcal{C}\text{-}C^*$ -algebras with extendible cocycle morphisms.

- have a notion of inner automorphisms $\mathrm{Ad}(u)$ with linear maps $\mathrm{Ad}(u)_X(\xi) = u \rhd \xi \lhd u^*$ for $u \in U(M(A)), \ \xi \in F(X)$.
- the topology of the space of cocycle morphisms defined by the convergence

$$(\phi_{\lambda}, h_{\lambda}) \to (\phi, h) \Longleftrightarrow h_{\lambda}^{X} \to h^{X}$$
 pointwise

is complete and metrisable.

Theorem (G, Neagu)

Let $\mathcal C$ be a semisimple C^* -tensor category with countably many isomorphism classes of simple objects. Then the quotient functor

$$C_{\mathcal{C}}^* \to C_{\mathcal{C}}^* / \approx_{\mathcal{C}}$$

is surjective on isomorphisms.

Outline

What is intertwining and why?

2 C*-tensor category equivariant intertwining

3 Applications

Classification Theorem

Unital, simple, separable, amenable, \mathcal{Z} -stable C*-algebra satisfying the UCT are classified by K-theory and traces.

Classification Theorem

Unital, simple, separable, amenable, \mathbb{Z} -stable C*-algebra satisfying the UCT are classified by K-theory and traces.

A is \mathcal{Z} -stable if $A \cong A \otimes \mathcal{Z}$

Classification Theorem

Unital, simple, separable, amenable, \mathcal{Z} -stable C*-algebra satisfying the UCT are classified by K-theory and traces.

A is \mathcal{Z} -stable if $A \cong A \otimes \mathcal{Z}$

If A is \mathcal{Z} -stable and $\Gamma \curvearrowright A$ when is $A \rtimes \Gamma \mathcal{Z}$ -stable?

If A is \mathcal{Z} -stable and $\Gamma \curvearrowright A$ when is $A \rtimes \Gamma \mathcal{Z}$ -stable?

Definition

A group action $\alpha:G\curvearrowright A$ is called (equivariantly) $\mathcal Z$ -stable if $\alpha\otimes\operatorname{id}_{\mathcal Z}\simeq\alpha.$

If A is \mathcal{Z} -stable and $\Gamma \curvearrowright A$ when is $A \rtimes \Gamma \mathcal{Z}$ -stable?

Definition

A group action $\alpha:G\curvearrowright A$ is called (equivariantly) \mathcal{Z} -stable if $\alpha\otimes\operatorname{id}_{\mathcal{Z}}\simeq\alpha.$

"Nice" inclusions $A\subset B$ come from actions of unitary tensor categories and generalised crossed products.

F stabilised by \mathcal{Z}

$$F \otimes \mathrm{id}_{\mathcal{Z}} : \mathcal{C} \to \mathrm{Corr}(A \otimes \mathcal{Z})$$
$$X \mapsto F(X) \otimes \mathcal{Z}$$
$$f \mapsto F(f) \otimes \mathrm{id}_{\mathcal{Z}}$$

F stabilised by ${\mathcal Z}$

$$F \otimes \operatorname{id}_{\mathcal{Z}} : \mathcal{C} \to \operatorname{Corr}(A \otimes \mathcal{Z})$$

$$X \mapsto F(X) \otimes \mathcal{Z}$$

$$f \mapsto F(f) \otimes \operatorname{id}_{\mathcal{Z}}$$

Definition

F is \mathbb{Z} -stable if $F \simeq F \otimes \mathrm{id}_{\mathbb{Z}}$.

Theorem (Kirchberg, see Toms-Winter)

Let A be a unital, separable C^* -algebra. Then

$$A \otimes \mathcal{Z} \cong A \iff \mathcal{Z} \hookrightarrow A_{\infty} \cap A'$$
 unitaly.

Theorem (Evington, G., Jones)

Let $F: \mathcal{C} \curvearrowright A$ be an action of a unitary tensor category with countably many isomorphism classes of simple objects on a unital, separable C^* -algebra. Then

$$F \otimes \mathrm{id}_{\mathcal{Z}} \simeq F \iff \mathcal{Z} \hookrightarrow (A_{\infty} \cap A')^F$$
 unitaly

where

$$(A_{\infty} \cap A')^F = \{ a \in A_{\infty} : a \rhd \xi = \xi \lhd a, \ \forall X \in \mathcal{C}, \xi \in F(X) \}$$

Theorem (Evington, G., Jones)

Let $F: \mathcal{C} \curvearrowright A$ be an action of a unitary tensor category with countably many isomorphism classes of simple objects on a unital, separable C^* -algebra. Then

$$F \otimes \mathrm{id}_{\mathcal{Z}} \simeq F \iff \mathcal{Z} \hookrightarrow (A_{\infty} \cap A')^F$$
 unitaly

Sketch proof

Let's consider the non-equivariant version first. Want to tweak $\mathrm{id}_A\otimes 1_\mathcal{Z}$ up to approximate unitary equivalence to be surjective.

Theorem (Evington, G., Jones)

Let $F: \mathcal{C} \curvearrowright A$ be an action of a unitary tensor category with countably many isomorphism classes of simple objects on a unital, separable C^* -algebra. Then

$$F \otimes \operatorname{id}_{\mathcal{Z}} \simeq F \iff \mathcal{Z} \hookrightarrow (A_{\infty} \cap A')^F$$
 unitaly

Sketch proof

Let's consider the non-equivariant version first. Want to tweak $\mathrm{id}_A \otimes 1_\mathcal{Z}$ up to approximate unitary equivalence to be surjective.

By hypothesis one can show that for any finite $F \subset A$, $G \subset A \otimes \mathcal{Z}$, $\varepsilon > 0$ there exists $v \in U(A \otimes \mathcal{Z})$ with

$$\|\operatorname{Ad}(v)(a\otimes 1) - a\otimes 1\| \underset{F,\varepsilon}{\approx} 0, \quad \operatorname{dist}(\operatorname{Ad}(v^*)G, A\otimes 1) < \epsilon$$

Sketch proof

By hypothesis one can show that for any finite $F \subset A$,

$$G \subset A \otimes \mathcal{Z}$$
, $\varepsilon > 0$ there exists $v \in U(A \otimes \mathcal{Z})$ with

$$\|\operatorname{Ad}(v)(a\otimes 1) - a\otimes 1\| \underset{F,\varepsilon}{\approx} 0, \quad \operatorname{dist}(\operatorname{Ad}(v^*)G, A\otimes 1) < \epsilon$$

$$A \otimes \mathcal{Z} \xrightarrow{\qquad} A \otimes \mathcal{Z} \xrightarrow{\qquad} A \otimes \mathcal{Z} \dots \xrightarrow{\qquad} A \otimes \mathcal{Z}$$

$$id_A \otimes 1$$

 $\rightarrow A \dots \longrightarrow A$

Sketch proof

By hypothesis one can show that for any finite $F \subset A$,

$$G\subset A\otimes \mathcal{Z},\, \varepsilon>0$$
 there exists $v\in U(A\otimes \mathcal{Z})$ with

$$\|\operatorname{Ad}(v)(a\otimes 1)-a\otimes 1\|\underset{F,\varepsilon}{\approx}0,\quad\operatorname{dist}(\operatorname{Ad}(v^*)G,A\otimes 1)<\epsilon$$

Sketch proof

By hypothesis one can show that for any finite $F \subset A$,

$$G\subset A\otimes \mathcal{Z}$$
 , $\varepsilon>0$ there exists $v\in U(A\otimes \mathcal{Z})$ with

$$\|\operatorname{Ad}(v)(a\otimes 1)-a\otimes 1\|\underset{F,\varepsilon}{pprox}0,\quad\operatorname{dist}(\operatorname{Ad}(v^*)G,A\otimes 1)<\epsilon$$

Sketch proof

One can show that for any finite $K \in \operatorname{Irr}(\mathcal{C})$, $F^X \subset F(X)$, $G^X \subset A \otimes \mathcal{Z}$, $\varepsilon > 0$ there exists $v \in U(A \otimes \mathcal{Z})$ s.t. for $X \in K$

$$\|\operatorname{Ad}(v)_X(\xi\otimes 1) - \xi\otimes 1\| \underset{F^X,\varepsilon}{\approx} 0, \quad \operatorname{dist}(\operatorname{Ad}(v^*)_XG^X, F(X)\otimes 1) < \epsilon$$

$$F(X) \otimes \mathcal{Z} \xrightarrow{G_1^X} G_2^X \underset{|\cap}{\cap} F(X) \otimes \mathcal{Z} \xrightarrow{F(X) \otimes \mathcal{Z}} F(X) \otimes \mathcal{Z} \dots \longrightarrow F(X) \otimes \mathcal{Z}$$

$$\uparrow \approx_{F_1^X, \epsilon_1} \uparrow \approx_{F_2^X, \epsilon_2} \uparrow \operatorname{Ad}(v_1 v_2)(\operatorname{id}_{F(X)} \otimes 1)$$

$$F(X) \xrightarrow{F(X) \longrightarrow} F(X) \xrightarrow{F(X) \longrightarrow} F(X) \square$$

Theorem (Evington, G., Jones)

Let $F:\mathcal{C} \curvearrowright A$ be an action of a unitary tensor category with countably many isomorphism classes of simple objects on a unital, separable C^* -algebra then

F is \mathcal{Z} -stable $\Leftrightarrow \mathcal{Z} \hookrightarrow (A_{\infty} \cap A')^F$ unitaly

The right hand side is checkable in practice! We can check it for "stationary AF-actions" of fusion categories for example.

Thank you!